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Abstract

This paper introduces a modelling framework to perform automatic analyses on the specification of
an information exchange policy. To avoid the increase of development costs and risks of uncontrolled
dissemination of information, the specification errors need to be detected before the implementation phase.
We propose a minimalistic core language to unambiguously represent an exchange policy specification and
a gateway to logic solvers to verify some properties, namely: completeness, consistency, applicability and
minimality. The aim is to check wether the formalisation of an exchange policy is consistent with user
expectations.

1. Introduction

Today, it is clear that organisations are increasingly interconnected and exchange ever larger
amounts of information. As an example, we can consider the extended enterprise, which is
actually a group of firms sharing a common purpose, usually the manufacture and marketing

of a product and which, through alliances, share resources and knowledge. In this context,
information exchange occurs between the different companies, either through interconnected
information systems, or federated platforms that serve as bridges between systems, or sometimes,
even more trivially, by simple file sharing between agents. In addition, each organisation can
belong to subsystems based on agreements, partnerships, subsidiaries belonging to the same
group, etc.; depending on the subsystem, information exchange takes place according to different
and potentially contradictory rules.

In this world of exchange, controlling the information flow appears essential. As a consequence,
organisations need regulation norms to define rules that systems must follow for the information
exchange. These rules ensure properties such as the fact that a particular agent is always informed
of specific topics, the fact that no information can be released without prior consent of its owner,
etc. A particular set of rules of this kind forms what we call an exchange policy.

Before considering the implementation of an information system, and all the problems that
stem from the application of the exchange policy to the system, we need to define the notion of
exchange policy itself and provide automatic analysis means to support the specification designer.
The design errors that are not detected before the implementation phase of a policy increase
development costs and risks of uncontrolled dissemination of information. In the more general
field of specification engineering, recent works like [ABGR07], [CCR08] or [DDFPP11] propose to
introduce formal methods in model-driven engineering processes, at early stages of model design
and requirement formalisation. The proposed approaches mostly consist in using automatic
constraint satisfaction techniques to perform various generic verification tasks on a given model
and associated logical specification. Following the same line of thought, we propose to offer
support to the designer of an exchange policy in order to verify that his formalisation correctly
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captures all aspects of the original problem without error, contradiction or redundancy, by offering
a validation approach in the policy specification phase. In addition, a lightweight analyser based
on state of the art pseudo-Boolean solving engines allows to analyse easily a policy when the
specification of the system environment evolves, or when policy rules are added, removed or
modified.

The goal of the proposed formal analyses is to support exchange policy specification. These
analyses consist in establishing that the regulation of information exchange guarantees a set of
properties that we call generic, namely: completeness, consistency, minimality and applicability.
By “generic” we mean that these properties can be reasonably expected to hold for any policy
specification, and somehow capture a simple form of best practices of policy engineering. As we
will see, the completeness of a policy is the property that there are no situations not covered by
the policy; the consistency of a policy is the property that rules do not contradict one another; the
applicability of a policy is the property that it does not attempt to handle situations ruled out by
domain constraints. Last, the minimality is the property that no rule of the policy can be deduced
from the others.

The paper is structured as follows. In Section 2, we review existing logic representations of
normative concepts. In Section 3, we give a definition of a formal modelling framework suitable to
express exchange policies without ambiguities. In Section 5, we define the notion of completeness
for a policy. In Section 6, we define the notion of consistency for a policy. Section 7 deals with
notions of policy applicability and minimality. Last, Section 8 concludes the paper and outlines
perspectives to this work.

2. Policies modelling

The notion of exchange policy is closely linked to the notion of norm. A norm in a multi-agent
system is a set of statements that regulates the behavior of agents. It expresses which actions are
mandatory, permitted or forbidden, for whom and under which conditions. According to the
definition of Information Technology Security Evaluation Criteria, “A System Security Policy specifies the
set of laws, rules and practices that regulate how sensitive information and other resources are managed,
protected and distributed within a specific system”[ITS91]. This definition is very general, and many
studies have attempted to formally define norms for information access, more precisely by defining
formal frameworks for expressing rules on actions that enable an agent to access information,
such as: reading a file, accessing a database [BC92][BC94][CBC08][CC97][JS92]. All these studies
have in common the use of a modal operator to model the deontic normative aspects inherent in
any policy.

In the literature, one also finds a large body of work in which various temporal logics are used
to model the actual implementation of multi-agent systems. In this paper, we decide to focus only
on the normative aspect of policies, adopting the notions provided by deontic logic.

Deontic logic is a formal framework dedicated to the expression of obligation and related
concepts and to reasoning on them [Ce75]. To enable this, deontic logic defines the notion of
obligation through a modal operator. A key property of this type of logic is that a proposition
may be required to hold by the norms, without actually holding in the real world. If modal logic
provides a formal framework, together with a semantics, which allows us to model and reason
clearly and without ambiguity, it is not without limitations. One problem, raised by [McC97], is
that even though modal logic helps to manipulate concepts and their associated rules, it is difficult
to handle by ordinary people, and remains a tool limited only to logicians. One might however
object to this argument that only natural language can be understood by everybody, bringing
us back to all issues related to natural language ambiguities. We emphasise that one of the
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problems of modal logic is the current limitations in tool support for evaluating the satisfiability
of a formula. Since our goal is to provide automatic analyses to support the design and validation
of an exchange policy, we need to be able to use efficient formal checking tools. At the present
time, tools dedicated to modal logic are less efficient than standard logic solver tools [SV09].

In order to use plain first order logic rather than modal logic with a deontic modality, some
works suggest to use a predicate to model the notion of obligation [ABB+03] [CGS06] [HW06].
In particular, [CM04] defines a model for Role-Based Access Control [FK92], named OrBAC (Or-
ganization Based Access Control). They introduce three predicates for obligation, permission
and prohibition, which give abstract rights in an organisation, for a role, to perform an action
for a view in a context. From there, they deduce what they call concrete permissions that model
normative obligation, permission and prohibition, for a role to perform an action with an object.
A simple example of this type of representation is the “prohibition for the role secretary to perform
the action modify file on the object medical record”.

Note that, in frameworks such as OrBAC, normative predicates have three places: subject,
action and object. Their policies hence model actions represented by transitive verbs (divalent
verb). This choice is motivated by the purpose of access control policies, which is to model the
conditions under which agents can perform actions such as reading or writing data on various
data sources. In our context, we are not interested in modelling actions in general, but rather in
modelling actions of information exchange between two agents. Here, the information exchange
actions correspond to ditransitive verbs (trivalent verbs), for instance: “to exchange”, “to say”,
“to give” or “to send”. In conclusion, if we follow the idea of representing deontic notions using
predicates, it is not possible to represent an exchange policy using existing access control logical
modelling frameworks.

Among all variants of first order logic, we chose many sorted first-order logic (msfol) [Gal87]
over unsorted first-order logic as a background theory in which to model policies, simply because
the use of sorts allows to express models with better compacity than in the unsorted case.

Of course, finding the right modelling methodology for multi-agent systems and defining
the right ontologies for certain classes of systems is a research subject in its own right. At the
present time, we have not yet addressed system modelling in such depth. The work presented
here consists in providing a minimalist yet extensible modelling framework featuring automatic
analysis supported by state of the art SAT/pseudo-Boolean solvers.

3. A Language for Exchange Policy Specification

The many-sorted first order logic is a good candidate general logical framework for modelling
policies. Its signatures, syntax and semantics are described in the first subsection. The logical
framework peps

1 is defined in the second subsection. peps syntax and semantics are directly
inherited from msfol, but it offers a minimalist set of built-in sorts and predicates dedicated to
policy modelling, and policy rules are logic formulas which must satisfy syntactical restrictions,
which are also motivated and detailed in the second subsection. The third subsection introduces a
example of specification.

3.1. Many-sorted First Order Logic

A many-sorted first order logic signature is defined as a quadruple

Sig = {Sort, Var, Fun, σ}
1
peps is a recursive acronym for: Peps for Exchange Policy Specification.
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where:

• Sort is a set of sorts identifiers, containing at least the sort Bool;

• Var is a set of variables identifiers;

• Fun is a set of functions identifiers;

• σ : Fun→ Sort∗ × Sort associates a prototype with each function f ∈ Fun.

The prototype of a function f specifies the sort expected for each argument of f together with
its return sort, and is written ((S1, . . . , SN) S), where N is called the arity of f . If N = 0, f is called
a constant of sort S. If the return sort is Bool, f is called a predicate. Const ⊆ Fun is the subset of
constants of the signature, and Pred ⊆ Fun is the subset of predicates of the signature. A function
identifier and its prototype declaration can be combined using the notation f (S1, . . . , Sn) : S, or
even f (a1 : S1, . . . , an : Sn) : S, whenever assigning names to function arguments is helpful for
documentation purposes. The return sort is often omitted for predicates, usually declared as
p(a1 : S1, . . . , an : Sn).

Well sorted terms and formulas are defined inductively as usual: a constant c of sort S is a
term of sort S; assuming terms t1, . . . , tn of sorts S1, . . . , Sn and a function f (S1, . . . , Sn) : S, then
f (t1, . . . , tn) is a term of sort S. Terms of sort Bool are called formulas. If t1, t2 are terms of the
same sort, then t1 = t2 is a formula. If p and q are formulas, then so are ¬p, p ∧ q, p ∨ q, p =⇒ q
and p ≡ q (representing logical negation, conjunction, disjunction, implication and equivalence,
respectively).

Variable identifiers of the signature are used with quantifiers. A universally quantified formula
(respectively existentially quantified formula) has the form ∀x : S, p (respectively ∃x : S, p) where:
x is a variable identifier said to be bound to the quantifier, p is a formula in which x is regarded as
a term of sort S and must be free in p (i.e., not enclosed in the scope of any other quantifier found
in p). The sort declaration for the variable can be omitted when it can be easily inferred by the
reader from the use of the variable. A term or formula is closed when it does not contain any free
variables, i.e. when all variables it contains are bound to some quantifier within the formula. For
instance, ∃x : s1, f (x) ∧ f (y) is not closed because y is not bound and ∃x : s1, ∀y : s2, f (x) ∨ g(y) is
a closed formula.

The semantics of many-sorted first order logic will not be detailed here, yet the usual truth
conditions can be found in [Gal87]. Logical consequence through models is noted |=, i.e. we
note F |= G when each model of formula F is also a model of formula G and |= F when F is a
tautology.

3.2. Exchange Policies Specification

Now that the underlying logical framework is introduced, we can define the peps policy modelling
framework with greater detail. A peps signature is essentially an msfol signature satisfying a few
extra requirements. Since the goal of peps is to express what information items must, must not or
can be exchanged, between whom and on what topic, we first assume that at least the following
sorts are present in a peps signature:

• A, which represents the agents of the system;

• I , which represents information items;

• T , which represents information topics.
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In addition, the following domain-predicates, called D-predicates from now on, are assumed to be
part of the signature:

• Know(a : A, i : I), which models the fact that an agent knows a piece of information;

• Topic(i : I , t : T ), which expresses that a piece of information is relevant to a certain topic.

peps is not a locked-down language. It is possible to declare additional sorts and D-predicates
in a peps signature besides those presented here. In this paper, we only give the core language
to illustrate our automatic analyses. We will only use the D-predicates and sorts introduced
so far in subsequent examples, but for realistic applications, the modelling framework can be
easily extended with extra sorts and functions to capture finer details of domains and information
exchange policies, such as: a predicate Link(a1 : A, a2 : A) to model that a communication link
exists between agents a1 and a2; a sort L to model the different accreditation levels, a predicate
Ilevel(i : I , l : L) to model that information item i requires accreditation level l for access, a
predicate Alevel(a : A, l : L) to model that agent a has the accreditation level l, etc.

Well sorted peps terms, formulas and their semantics are defined just as in msfol.
The concept of obligation, more specifically the obligation for an agent to send an information item

to another agent, must be readily available in the modelling framework. Unlike standard deontic
logic, we will not have a generic obligation operator, but only the concept of obligation to send
information item i from agent a1 to agent a2. We hence assume that three normative-predicates, called
N-predicates from now on, are always present in a peps signature: OSend(a1 : A, a2 : A, i : I),
PSend(a1 : A, a2 : A, i : I), FSend(a1 : A, a2 : A, i : I), which represent respectively the obligation,
permission and prohibition for an agent a1 to send a information item i to another agent a2.

A peps formula is called an objective formula if and only if it does not contain any N-predicates,
in which case it only describes objective knowledge or facts about the domain rather than a
normative requirement.

In standard deontic logic, the axiom (D) [Che80] expresses that if p is obligatory then p must
be permitted. In peps we do not have obligation in the general sense but the obligation for some
agent to send something to some other agent, so we translate this axiom to a logical property, that
we call also (D).

Definition 1 (D)
∀a1, ∀a2, ∀i, OSend(a1, a2, i) =⇒ PSend(a1, a2, i)

The property (D) expresses that if it is obligatory for an agent to send an information item to
another agent, then it is also permitted for this agent to send this information item to this other
agent. Next, we define the notion of information exchange rule in peps.

Definition 2 (Exchange rule)
An exchange rule is a closed peps formula of one of the following syntactical forms:

∀x1, . . . , ∀xn, (φ =⇒ OSend(t1, t2, t3))

∀x1, . . . , ∀xn, (φ =⇒ PSend(t1, t2, t3))

∀x1, . . . , ∀xn, (φ =⇒ FSend(t1, t2, t3))

where:

• x1, . . . , xn are all the variables identifiers occurring in φ, t1, t2 and t3;

• φ is a quantifier-free objective formula;
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• t1, t2 are quantifier-free terms of sort A;

• t3 is a quantifier-free term of sort I .

In definition 2, the formula φ is without quantifiers and without normative predicates, but
besides these restrictions all operators, constants, functions and variables (necessarily bound to
one of the rule’s quantifiers) are allowed. Moreover, t1, t2 and t3 are not necessarily closed, so
they can contain constants, functions and variables. Of course, the rule formula being closed, the
variables in these terms are necessarily bound to one of the rule’s quantifiers.

Each rule expresses under what condition it is obligatory, permitted or forbidden for an
agent to send a piece of information to another agent. For instance, given constants i1, i2, i3 : I
and constant b : A, the formula ∀a, (Know(a, i1) ∨ Know(a, i2)) =⇒ OSend(a, b, i3) is a correct
exchange rule, but the formula ∀a1, ∀a2, ∀i, > =⇒ ¬OSend(a1, a2, i) is not correct, because of the
negation on the right hand side of the implication.

Definition 3 (Exchange policy)
An exchange policy EP is a collection of exchange rule formulas.

Definition 4 (Exchange policy specification)
An Exchange Policy Specification EPS is a pair 〈Σ, EP〉 where:

• Σ is a satisfiable set of objective formulas describing facts and knowledge about the domain;

• EP is an exchange policy as described in Definition 3;

3.3. Example

Consider this simple example: an Earth Observation System composed by several observing
systems sharing environmental data, for the purpose of disaster prevention and management
(this example is strongly inspired by GEOSS: Global Earth Observation System of Systems). Each
observing system is owned by a nation and exchanges observations with others in order to build a
global picture of the Earth’s condition. Because the system is civilian and is open to all nations,
and because some of the observing systems are military and some are civilian, nations do not want
any information with potential military utility to get disseminated through this system. Moreover,
in the context of climate disaster awareness, this system has a distinguished agent, the Tsunami
Warning Center or TWC.

This system has rules which specify in what context, under what conditions, who has the
obligation, prohibition or permission to release any information, to whom. For the moment, let us
assume that the policy consists of only two rules: (a) “as part of the tsunami prevention, all information
about the topic tsunami (such as a submarine landslide) must be sent to the Tsunami Warning Center”; (b)

“the system should not disclose information relating to military topics”.
These two rules are expressed in the peps framework as follows (with constants TWC : A,

tsunami : T and mili : T ):

(a) ∀a, ∀i, Topic(i, tsunami) ∧ Know(a, i) =⇒ OSend(a, TWC, i)

(b) ∀a1, ∀a2, ∀i, Topic(i, mili) ∧ Know(a1, i) =⇒ FSend(a1, a2, i)

Note that peps provides a minimalist and extensible modelling language with only three
sorts but, even if specifying topic taxonomies is not the issue discussed here, it is possible to
express simple notions like a parent relationship among topics using the logical implication
and extra constraints. In our example, if military is the parent topic of troop, we would write
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Topic(i, troop) =⇒ Topic(i, mili) which means all information about the topic troop is also about
the topic military. From this and rule (b), we can easily deduce: ∀a1, ∀a2, ∀i, Topic(i, troop) ∧
Know(a1, i) =⇒ FSend(a1, a2, i), the action of sending information about the topic troop is
prohibited.

4. Automated Model Finding Techniques

4.1. Bounded model checking

Our aim is to provide automatic tool support to users defining exchange policy specifications.
Analyses should be simple to configure and to use and as automatic as possible. In order to do so,
we harness the power of automated model finding techniques for logical constraints.

In approaches such as [ABGR07], [CCR08] or [DDFPP11], the addressed verification problems
are formalised in (many-sorted) first order logic and are hence undecidable in the general case,
i.e. it is not possible to determine if an arbitrary msfol (or peps, by extension) formula is valid in
finite time. So, in the mentioned approaches, authors used a bounded model checking approach: for
an analysis, instances which satisfy the formulas under analysis are searched for in a bounded
universe and the cardinality is increased by the user from iteration to iteration. Even though each
bounded instance can be arbitrarily large, it remains decidable. A key feature of model finding
approaches is that, when a required property does not hold on a specification, a counter example
is produced, which helps the user understand the problem and fix the specification.

4.2. The PEPS implementation

Because of the decidability issue, we also adopt a bounded model checking approach to analyse
peps specifications. By doing so, we lose the ability to prove genuine first order theorems about
peps specifications. Indeed, the proposed analyses are only valid on systems up to a certain
number of agents, information items, topics, etc. But on the other hand, we obtain a higher degree
of automation and simplicity for the user. Our analyser is just a black box to which logical queries
about the policy specification can be addressed with minimal parameter configuration.

The analyses detailed in the next sections are implemented using our own grounding tool for
msfol formulas [DDFPP11], which interprets sorts over finite discrete domains.

With our tool, the only way to conduct an analysis is by transforming a given msfol formula
into an equivalent pseudo-Boolean logic formula and by checking its satisfiability using a com-
patible solver. For instance, given two formulas F and G, if the goal is to verify that F |= G, then
F ∧ ¬G is translated and checked for unsatisfiability. Whenever the pseudo-Boolean solver returns
a model of the given formula, the tool translates it back into the peps specification language to
help debug the specification.

The pseudo-Boolean satisfiability problem can be seen as an extension of the SAT problem.
A pseudo-Boolean instance is a conjunction of constraints of the form Σiai li ≤ k, where ai and
k are integer coefficients, and li a literal (a boolean variable or its negation). Today’s pseudo-
Boolean solvers use a standard file format named OPB and periodically the international PB-Eval
competition2 allows to benchmark the latest evolutions of the field.

The main ideas behind the grounding and propositional encoding procedure we implemented
follow. First, the grounding operation works by representing sorts using finite sets of constants,
introducing as many fresh constants3 as needed by the sorts cardinalities. For instance, the sort S

2http://www.cril.univ-artois.fr/PB09/
3constants which name is not already used elsewhere in the specification
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of cardinality n is represented by the set of fresh constants {S1, . . . , Sn}. Then, domain constants
are substituted for variables and propagated in all quantified expressions. Universal quantifiers
are expanded as conjunctions and existential quantifiers as disjunctions. After this step, there are
no quantifiers or variables left in the challenge formula, only constants, predicate and function
applications and logical operators.

Second, the grounded formula is transformed into a propositional formula using a bitvector
encoding (bitvectors are vectors of propositional variables): identifiers for constants of given sorts
are encoded using bitvectors of appropriate size; predicates are encoded using a propositional
variable for each point of their domain of definition; functions returning a given sort are encoded
using a bitvector of appropriate size for each point of their domain of definition; function and
predicate applications are encoded using advanced bitvector constructs.

Last, bitvector expressions are transformed into clauses (in pseudo-Boolean form) using
standard Tseitin rules [Tse68]. Obviously, only clausal encodings are generated by following this
approach, but we plan on allowing cardinality constraints and generic pseudo-Boolean constraints
in the peps language in the future, hence the use of pseudo-Boolean logic as target language.
After this translation we obtain a pseudo-Boolean formula that can be analysed using any solver
supporting the OPB format. One important feature to notice about the tool is that each translation
step is cached and reversible, meaning the tool is able to translate a model returned by a solver
back to the peps level. For solving, we favor Sat4j [BP10], yet alternatives are available, like
WBO [MSP09] or Minisat+ [ES06]. Most of these solvers are open source.

5. Completeness of a Policy

5.1. Definition

A policy specification is not complete whenever there are situations in which agent behavior is not
explicitly constrained by the policy, that is to say, when at least one non liquet4 exists. This notion
of completeness shall not be mistaken for that of completeness for a formal system such as msfol.
On the one hand, if the policy says nothing about the dissemination of a piece information, an
agent could choose a permissive approach5, everything that is not specified is allowed, and in
this case the agent could send sensitive information. On the other hand, if the agent chooses a
prohibitive approach, in which everything that is not specified is prohibited, then communication
in the system could be forbidden. The incompleteness of a policy may hence become a major
issue if it relates to sensitive systems where a non liquet gives the possibility for agents to act with
important consequences.

Here, we give a simple formal definition for policy specification completeness: a policy
specification EPS = 〈Σ, EP〉 is complete if and only if, for any agent who knows a piece of
information, the policy rules state whether or not to send it to any another agent, in any situation
allowed by the domain model Σ. In other words, the policy specification is complete if it is possible
to deduce from Σ and EP that each agent, for any piece of information, in any situation, is either
allowed, obligated or forbidden to send it to any other agent.

Definition 5 (Completeness of a policy specification)
Let EPS = 〈Σ, EP〉 be an exchange policy specification, EPS is complete if and only if

4In law, a situation where there is no applicable law is a non liquet.
5The legal principle nulla poena sine lege “no penalty without a law”.
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( ∧
r∈EP

r) ∧ Σ ∧ D |= ∀a1, ∀a2, ∀i, Know(a1, i) =⇒

(OSend(a1, a2, i) ∨ PSend(a1, a2, i) ∨ FSend(a1, a2, i))

Please note that a policy EP on its own could be incomplete and only become complete once
conjoined with domain constraints Σ, which can precisely rule out non liquets.

5.2. Example

In the Earth Observation System example (setion 3.3), analysing the policy specification 〈∅, {a, b}〉
with the peps analyser reports that it is not complete. A simple counter example is returned, in
which information is linked to no topic, and hence does not fall under any of the policy rules.

A possible solution to this problem is, for example, to suppose that in the system, there is no
information without topic. This should be expressed not in the policy, but rather in the domain
constraints. Therefore, we add the following formula (r) (for relevancy) which says “any information
is relevant to at least one topic”:

(r) ∀i, ∃t, Topic(i, t)

Despite this addition, 〈{r}, {a, b}〉 is still not complete. Indeed, the analyser returns a new
counter example in which information is tsunami related. It reveals that the policy has no rules
specifying what an agent is supposed to do with information about the topic tsunami when dealing
with an agent that is not the TWC agent. We extend the policy with the rule (c): “it is permitted to
exchange information on the topic tsunami”, which is formalised as follows:

(c) ∀a1, ∀a2, ∀i, Topic(i, tsunami) ∧ Know(a1, i) =⇒ PSend(a1, a2, i)

At this point a remark is necessary. As already mentioned, our analyser only proves the
existence or absence of a model in a finite universe, which cardinality is specified by the user.
In our example, if we choose the cardinality of the sort T to be equal to two, then the policy
specification appears complete. Indeed, “all possible topics” is reduced to two topics tsunami and
mili, and the policy does cover all possible cases assuming only these two topics. But, if more
than two topics are allowed, our policy specification no longer appears complete. In this case, the
analyser returns a model in which information is relevant neither to the topic tsunami, nor to the
topic mili and for which no rule applies. Choosing sort cardinalities when analysing the model is
left to the user.

To obtain completeness for the example policy, we must add a rule (d) which is: “there is
no particular constraint on the exchange of information not relevant to the military topic”. This rule
corresponds to the following formula:

(d) ∀a1, ∀a2, ∀i, ¬Topic(i, mili) ∧ Know(a1, i) =⇒ PSend(a1, a2, i)

Now, we can check with our analyser that the specification 〈{r}, {a, b, c, d}〉 is complete. If we
increase sort cardinalities, for example to 10 agents, 10 topics and 10 pieces of information, the
specification is still complete. Of course, we do not prove the completeness of the specification for
an infinite universe. Nevertheless, we are more confident after analysing the specification than
without any analysis, and the analyser has been of great help in the task of writing and fine tuning
the specification.
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6. Consistency of a Policy

6.1. Definition

In logic, a theory is the collection of all truths that can be derived from a core set of assumptions. A
theory is consistent if it does not contain a contradiction. In the context of confidentiality policies,
in [BC94] two policies are consistent when conjoined if no user can have the permission, according
to the first policy, to know something and the prohibition, according to the second, to know it. For
us, an exchange policy is not consistent when some situation exists in which it is both obligatory
and forbidden, or permitted and forbidden, for an agent to send a piece of information to another
agent. The policy inconsistency is an important issue because both authorising and prohibiting a
same behavior forbids the application of the policy as a whole. The Algorithm 1 yields, given a
policy, a set of situations exhibiting inconsistency between pairs of rules, shall any such situation
exist. For each possible pair of rules having conflicting normative predicates as conclusions, the
algorithm generates a formula which, if satisfiable, indicates a situation in which the premises of
both rules are satisfied, and in which the terms used as arguments of the conflicting predicates
unify, hence showing that conflicting normative requirements must be applied to the same agents
and same information item. Not mentioned in this algorithm is the implicit variable renaming
performed on elements taken from r′ to avoid variable clashes when forming the satisfiability
objective.

Definition 6 (Consistency of a policy specification)
Let EPS = 〈Σ, EP〉 be an exchange policy specification, EPS is consistent if and only if the result of Search
for Non-Consistent rules SNC(Σ, EP) is empty.

Algorithm 1 Search for Non-Consistent rules (SNC)

Require: 〈Σ, EP〉, an exchange policy specification
Ensure: S, a set of tuples (r, r′, m) with r, r′ exchange rules, m a model.

S← ∅
for all r ∈ EP do

if r is of the form ∀x1, . . . , ∀xn, (φ =⇒ FSend(t1, t2, t3)) then
for all r′ ∈ EP do

if (r′ is of the form ∀x′1, . . . , ∀x′m, (φ′ =⇒ OSend(t′1, t′2, t′3))
or ∀x′1, . . . , ∀x′m, (φ′ =⇒ PSend(t′1, t′2, t′3))) then

if (m is a model of ∃x1, . . . , xn, x′1, . . . , x′m,
φ ∧ φ′ ∧ Σ ∧ (t1 = t′1) ∧ (t2 = t′2) ∧ (t3 = t′3)) then

S← S ∪ (r, r′, m)
end if

end if
end for

end if
end for

6.2. Example

In our example, the exchange policy 〈{r}, {a, b, c, d}〉 is not consistent. Indeed, the analyser
discovers two contradictions, one between rules (a) and (b) and another between rules (b) and (c).
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For the first contradiction, a counter example is returned, in which an information item is
relevant of to two topics, both tsunami and mili, and the agent who receives the information is
TWC. A very naive solution is to suppose that each information item is relevant of one and only
one topic. More realistic, with peps, we could also consider that information related with mili has
an accreditation level M, it is permitted to exchange this kind of information with agents whose
accreditation level is M, and that TWC is accredited at level M. To keep things simple, we decided
to replace the rule (b) with (b’) “an agent should not disclose information related to mili topics to an
agent other than TWC”:

(b’) ∀a1, ∀a2, ∀i, Topic(i, tsunami) ∧ Topic(i, mili) ∧ Know(a1, i) ∧ (a2 6= TWC)

=⇒ FSend(a1, a2, i)

In the same way, we replace the rule (c) with (c’) “an agent should not disclose information related
to mili topics but not related to tsunami topics”:

(c’) ∀a1, ∀a2, ∀i, Topic(i, tsunami) ∧ ¬Topic(i, mili) ∧ Know(a1, i)

=⇒ PSend(a1, a2, i)

Yet, with this modification, the analyser informs us that the specification 〈{r}, {a, b′, c′, d}〉
is not complete. To obtain completeness we must add one more rule (e)“military information not
related to tsunami should not be sent between agents”:

(e) ∀a1, ∀a2, ∀i, Topic(i, mili) ∧ ¬Topic(i, tsunami) ∧ Know(a1, i)

=⇒ FSend(a1, a2, i)

7. Other Properties of a Policy

In this section, we define two new properties for policies, aiming at detecting cases of over-
specification: applicability and minimality. An applicable and minimal policy is such that each rule
can be applied in at least one situation allowed by domain constraints, and contains no redundant
rule with respect to others.

7.1. Definitions

A policy is applicable under domain constraints Σ if and only if for each of its rules, there exists a
situation in which the rule applies. The underlying idea is that in an applicable policy, there are
no rules which premises are contradicted by the domain constraints.

Definition 7 (Applicability of a rule)
Let Σ be a set of domain constraints and r an exchange rule as defined in Definition 2, section 3, i.e.
r = ∀x1 . . . ∀xm(φ→ ψ). r is applicable relatively to Σ if and only if

Σ ∧ D |= ∃x1 . . . ∃xmφ

Definition 8 (Applicability of a policy)
Let EPS = 〈Σ, EP〉 be an exchange policy specification, EPS is applicable if and only if for each rule r of EP,
r is applicable relatively to Σ.

So, the applicability of a rule is defined as a satisfiability problem for each rule’s φ component
under assumptions Σ∧D. The unsatisfiability of the rule’s premises under environment constraints
reveals the non-applicability of the rule, i.e. proves that no situation can satisfy the premises.

11
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Another interesting notion for a policy is that of minimality. A policy is said to be minimal if
none of its rules can be deduced from the others under the domain constraints.

Definition 9 (Minimality of a policy)
Let EPS = 〈Σ, EP〉 be an exchange policy specification with EP = {r1, . . . , rn}. EPS is minimal if and
only if there is no i such that:

Σ ∧ D |= (
∧

k∈[1,n],k 6=i

rk) =⇒ ri

In the same way as for applicability, showing the minimality of a policy is achieved by solving
a series of satisfiability problems, each exhibiting a situation in which a certain rule is the only
rule of the policy whose premises are satisfied, hence showing its independence with respect to
the other rules.

7.2. Example

Coming back to our example, the analyser allows to prove that all rules are applicable: the policy
specification 〈{r}, {a, b′, c′, d, e}〉 is applicable.

However, the analyser reports that the specification is not minimal. Indeed, it can be proved
that the rule (c’) can be deduced from the others. If we choose to reduce the policy specification
by removing the rule (c’), we can successfully check with the analyser that the specification is still
complete and consistent.

Finally, the exchange policy specification 〈{r}, {a, b′, d, e}〉 is complete, consistent, applicable
and minimal.

8. Conclusion

In this paper we proposed a logical modelling framework suitable to express information exchange
policies. We also defined essential generic properties such as completenes, consistency, applicability
and minimality, and provided procedures for checking these properties using currently available
logic solvers. The proposed framework is extensible, as it is possible for the user to declare any
additional sort, function, or predicate needed for modelling, such as the roles played by an agent
in an organisation, or the accreditation level of information or agents, etc.

The bounded model checking approach and the pseudo-Boolean solvers back-ends used in
the analyses proposed in this paper have already passed with great success scalability tests on
real world instances in many different application domains like software verification, hardware
verfication etc.Therefore, we are confident in their performance for policy verification.

Our future work will cover two complementary aspects of policy verification and specification.
First, on the technical side of formal verification, we will study if and how the latest features of
logic solvers can be used to help the verification of policies. In particular minimal unsat core
generation may allow to discover the details of why a rule is unapplicable under a given set of
environment constraints. Concerning the completeness of an exchange policy, future work could
focus on the possibility to support the specification. Automatic model enumeration features will
be studied in relation with the abduction reasoning principle to try to automatically extend an
incomplete policy and make it complete.

Second, we intend to apply the proposed approach to model a real-world information exchange
policy in the domain of space situation awareness. The targeted application being somewhat
complex, we will investigate and develop the methodology of domain modelling and policy
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specification further. Dealing with information systems of this kind already brings new questions
to mind, such that of defining and studying other generic properties of policies. For example,
we might be interesed to verify that vital information can always reach the relevant agents for
appropriate action. For each new generic property, we shall proceed in the same way and give it
a formal definition in our modelling framework, and define associated verification procedures.
Also, supporting a variant of msfol with subsorting could allow for a better and more concise way
of modelling of complex application domains. Subsorting indeed allows to model hierarchies of
concepts or entities with greater ease. We also plan on allowing the specification and verification
of user-specified properties, in addition to the four generic properties discussed in this paper.
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