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Abstract

To reduce the verification costs and to be more confident on software, static program analysis offers ways to
prove properties on source code. Unfortunately, these techniques are difficult to apprehend and to use for
non-specialists. Modelling allows users to specify some aspects of software in an easy way. More precisely,
in embedded software, state machine models are frequently used for behavioural design. The aim of this
paper is to bridge the gap between model and code by offering automatic generation of annotations from
model to source code. These annotations are then verified by static analysis in order to ensure that the code
behaviour conforms to the model-based design. The models we consider are UML state machines with a
formal non-ambiguous semantics, the annotation generation and verification is implemented in a tool and
applied to a case study.

1. INTRODUCTION

Aeronautical software development, and more specifically software for safety critical applications,
is submitted to stringent constraints. DO-178C"| (certification standard for aeronautical software)
specifies development and verification objectives. Identified verification means are reviews,
analyses and test. One of its supplements, DO—SSﬂ is dedicated to the use of formal methods.
Formal methods are mathematical techniques which allow performing rigorous verification tasks
during software development. Formal methods are already applied in industry [19].

In an industrial context, at Atos, we notice that the cost of verification activities for embedded
software development can sometimes reach 60% of the project workload. This is not a new
problem, Hoare [15] was already reporting that over half of software development time was
dedicated to program testing.

Furthermore, in addition to the increasing complexity of embedded systems, today software
is not developed by a single company but by a set of stakeholders. These stakeholders have a
common purpose and share some resources and knowledge. In this context, it can be difficult to
communicate between all the different stakeholders. It is essential to offer a way for muti-cultural
teams to share, to discuss and to work with an unambigous formalism. Model Driven Engineering
(MDE) allows us to deal with these difficulties while ensuring the expected level of quality. It
suggests using models all along the development lifecycle; models can be used, for instance, for
documentation generation, design specification, simulation or code generation.

In this paper, we present an MDE approach to combine the advantages of model-based design
and the efficiency of formal methods dedicated to code verification. More specifically, we give a
process to support the design, development and verification of the implementation of software for
the management of avionic components.

Many modelling languages have been defined through past decades. The UMLH standard is
one of them. UML is widespread and it is currently used in Atos development teams. The current
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UML semantics is semi-formal as it is partially expressed in natural language. However, the UML
standard has known a significant evolution in its description since version 1.x. The Precise UML
group EI contributed to this evolution. It aimed at investigating a precise semantics for UML.
In [11], authors explain that the lack of precise semantics results in, among other, difficulties to
rigorously establish the consistency of a model and its implementation.We propose to exploit
the UML standard to model the design of embedded software. The design represents all the
information needed to directly implement the sofware.

In our approach, this implementation could be done by automatic generation from models or
by humans. Both solutions fit and, in this paper, we simply define an implementation pattern for
our UML model. We need this pattern to manage an automatic verification task.

The main contribution of this paper is automatic verification of a C code stemming from an
UML state machine. We want to prove that a source code implements and only implements
its model based design. This verification is done using static analysis. Static analysis allows
the detection of bugs and the verification of properties on a program without executing it. It
enables effective identification of software defects and allows reducing verification costs. We
propose to automatically generate annotations from the model into the code implementation.
These annotations represent the behavioural properties of the model. They will be automatically
verified by a static analysis tool.

The paper is structured as follows. Section [2| gives the definition of our language, subset
of UML state machines, and its formal semantics. Section [3| describes our process, give an
implementation pattern for our state machines and explain the annotations generation. Section
presents a prototype that implements our method. Section [5|reviews existing related work. Lastly,
Section [| concludes the paper and outlines perspectives to this work.

2. STATE MACHINE MODELLING IN EMBEDDED SOFTWARE CONTEXT

2.1. Modelling Language

In [10] we define a UML subset dedicated to embedded software specification and already used
for industrial purpose. In this subset, we use UML state machines to represent the behavioural
specification of software components. We limit the scope of elements and we define patterns for
specific use, without adding new concepts. These state machines are meant to be driven by a clock
and to do a certain number of actions at each clock tick.

Here, we use a limited subset of this language. Our state machines are composed of simple
states, which can contain actions defined in their entry behaviour. In UML, an action defined
in the entry behaviour is executed to completion at the entry into the state. Hierarchical states
and parallelism behavior are disallowed for the moment. We have transitions between states. A
transition is composed of a trigger, to manage event received by the state machine, and a guard,
representing the condition to fire the transition. The trigger can be defined by only two events: the
tick event and the completion event. The tick represents our clock tick and the beginning of a new
cycle. The completion event is a special event defined in UML, it represents the default event of
the triggers which is automatically generated at the end of all the actions of a state or at the entry
of state if no actions are defined. The guard is represented by a boolean expression expressed
in the OCL standard languageﬂ We do not allow the definition of actions on the transitions, i.e.
effects of the transitions. We authorise a unique pseudostate by state machine: the initial state.
These are the only UML elements used to model our cyclic state machine.

4www.cs.york.ac.uk/puml/
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Figure 1: LandingGear state machine

We add two constraints to these state machines. In the first constraint, we consider that all the
actions executed in one cycle end before the end of the cycle. As we are not interested in time
properties, we accept the synchrony hypothesis defined in [4]. It considers that every reaction of
the system is instantaneous. In the second constraint, we consider that the state machine must be
deterministic. We do not authorise conflicting transitions.

Consider the example of Figure(l} It is based on the example described in [13] and it illustrates
the behaviour of the software controling the landing gear of an UAV (Unmanned Aerial Vehicle).
The landing gear is composed of three gears: a nose gear, a left gear and a right gear. Each
of these gear has an up switch and a down switch, namely up_switches or down_switches in
our example. Each switch is closed when the gear is respectively up or down. An additional
switch on the aircraft, named the squat_switch, indicates if the weight of the plane is on the
nose or not. If the weight is on the nose, corresponding to squat_switch=GRD in Figure [1} it
means that the plane is still on ground; if not, squat_switch=AIR, it means that the plane is in the
air. The raising or lowering of the landing gear is managed by an electrically driven hydraulic
pump. This pump supplies pressure to the gear actuators. The pressure increases or decreases
depending on a computer-driven valve. When the pilot wants to raise the gears, He raises a
lever. When the lever is up, pilot_lever=UP, the pump is activated and the pressure level is set,
corresponding respectively to the actions Activity pump_on and Activity dir_up. When the
pilot wants to lower the gears, He lowers a lever, pilot_lever=DOWN the pump is also activated,
Activity pump_on, and the pressure level is set, Activity dir_down.

Starting in the default position, if we look for instance at the takeoff phase, the pilot raises
the lever and the aircraft needs to be airborne for two seconds (timer>2 and squat_switch=AIR)
before starting raising gears. This allows ensuring the aircraft does not touch the ground during
takeoff. After two seconds, the pump is activated and gears are raised. When gears are closed, the
pump is deactivated and the gears are in the up position.
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2.2. Semantics

We propose to formalise the semantics of our subset, in compliance with the UML semantic basis.
To understand it, the reader needs to be familiar with some UML specific concepts.

In UML, state machines behaviour is managed by event processing. Each state machine has
an event pool to store events, its politic of dequeuing must be defined by the user. The concept
of event processing is called Run-to-Completion which limits the processing of events to one at
a time. When an event is taken from the pool, if it enables a transition i.e. it fires a transition
according to the correctness of its guard, it is consumed. If not, the event is simply discarded. The
processing of a single event is called a Run-to-completion step. It represents the passage between
two stable state configurations of a state machine. A state machine is in a stable state configuration
when it is in a state where all the state actions have been completed: if a transition is fired at the
beginning of the run-to-completion step, this step ends when all the actions of the targeted state
are completed.

In our state machine, there are only two types of events, the tick event which is an external
event periodically given by the environment and the completion event which is an internal event.
The completion event is a very particular event defined in UML. It is automatically generated at
the end of all the actions of a state and it has priority over all events existing in the event pool. To
formally describe our semantics in a very simple way, we decide to make an abstraction of the
concept of event and only use the concept of run-to-completion step.

We define S the set of all states of the state machine, VAR the set of variables accessible by the
state machine. sy € S is the initial state of the state machine.

We define v as the variable assignment that associates an element of the domain of discourse
with each variable of VAR. We define vy the variable assignment for sy and V the set of all variable
assignments.

We define T : S x V — SU{Q@}, the transition function. For each state, T returns a new state
according to the transition guards. A guard condition is simply a first order logic formula, with
only constant and free variables and without quantifiers. The only predicate symbols we use
are the arithmetic comparison operators: <, >, <, >, =, #. In our case, we define two transition
functions : T, which is the transition function for transitions fired by completion event and Tj;
which is the transition function for transitions fired by tick event.

Because we do not have the disjunction of the guards of all outgoing transitions of a state, T,
and Ty could possibly return @ if no guard condition matches. Note that return @ or return to
the same state as the state passed as a parameter are not the same. Return ) means no transition
was taken, return to the same state means a reflexive transition was taken. In addition, because a
state could have an entry action, to take a reflexive transition causes the execution of the entry
action.

We also define A : S x V — V, the action function. A represents the execution of all entry
actions. In fact, for each variable assignment and a state, A returns a new variable assignment.

With the definition of the two previous functions, modelling the run-to-completion step (RTC)
in our cyclic state machine is quite easy. As we have two kinds of transition functions, we have
two kinds of run-to-completion. We define rfc. : S x V — S x V the run-to-completion step for
completion event and rtcyicr : S X V = S x V the run-to-completion step for tick event. Each of
them consists of: first apply T to the current state; second if T returns @ stay in the same state do
nothing and return @, else apply A and return the new state and the new variable assignment.

The way to call these two kinds of run-to-completion is specific to the cyclic behaviour of our
state machine. We define Cycle : S x V' — S x V the function which represents the behaviour
of a state machine in one cycle. At the beginning of Cycle, the state machine is in a stable state
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Figure 2: Example of two consecutive cycles within a state machine

configuration. Cycle first calls rtcy;; to deal with the tick event. If rtc; i returns @, it means that
no transition has been fired, so Cycle returns Id, the identity. If it does not return @, it calls rtc,
until there is no more transition with a completion event trigger to fire, i.e. rtc. return @. In a
more formalised way, we have :

vl rtcyer o rtc?  with n € N and rtc*+! returns @
cle =
Y Id if rtcyjr returns @

When a cycle begins, the event pool is empty before one unique tick event occurs. If this tick event
fired a transition, the tick event is consumed and the run-to-completion step will fill the event pool
with one completion event. This completion event is processed by a new run-to-completion step.
If a transition is fired, the event is consumed and the run-to-completion step will fill the event
pool with a new completion event. The state machine will repeat the same mecanism until no
more completion event are present in the pool (it corresponds to the iterative call of the RTC,
function in our semantics). Indeed, if no transition is fired, the completion event is discarded and
the pool is left empty until the next cycle. Thanks to the synchrony hypothesis described in the
previous section, we are sure that this chain of run-to-completion step will end before the next
cycle i.e. before a new tick event occurs. Consequently, at the beginning of a cycle, the event pool
is always empty before the tick event occurs and the completion event will only occurs after the
processing of this tick event.

The initial state sy is a particular state in UML. It is a pseudostate. As defined in the UML
semantics, this state has no trigger and guard defined on its unique outgoing transition. As
it is particular in UML, its processing will be defined separetely of the other states in our
semantics. We define a function Cycley : {so} x {vg} — S x V. We have Cycley = rtc! withn €
IN* where rtc!*! returns @. This function is only called once at the very beginning of the execution
of the state machine.

A cyclic state machine is defined by a 6—tuple (s, vg, Cycley, S, V, Cycle).

For example, Figure [2| describes two consecutive cycles in a state machine. Note that it is a
particular case, since there is at least one rtc. for each cycle.

3. FORMAL VERIFICATION FROM MODEL TO CODE

3.1. Our method

In MDE, models are used all along the development chain and allow users to generate the source
code implementation. Although a part of our work takes place at the code level, our contribution
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does not deal with code generation. We want to verify the behaviour of a C program, written by
humans or machines, according to its model based design. We will only give the implementation
pattern of a state machine, since information is needed on the code structure to manage our
verification. Our method focuses on the use of the semantics of UML state machines to derive
annotations to verify the code using static analysis.

Regarding the whole process in which we propose our verification method, we can compare our
method with a code generation method. At a technical level, automation of properties generation
for verification purpose is similar to automation of code generation. But, placed in a certification
context like DO-178C for the aeronautical domain, the qualification constraints of a verification
tool are much lighter than those of a code generator tool. If the verification tool fails, it does not
introduce errors in the target software while a code generator might. A code generator must be
qualified at least at the same level of criticality than the target software; it is not the case for a
verification tool.

To conduct static analysis we use the Frama—(ﬂ framework. It is an open-source and modular
environment which groups many different techniques and tools to conduct such analysis on
C code. It is based on the ACSL language [3] (ANSI/ISO C Specification Language). ACSL
is a specification language to express behavioural properties on C code. It is based on first
order logic and allows to specify function contracts, invariants, variants, loop specifications,
logic specifications and ghost codes. ACSL annotations are represented as comments in C code,
using specific tags to be recognised by Frama-C. These annotations are without side effect on the
program.

We use our cyclic UML state machine model to generate the corresponding ACSL function
contracts to verify the code behaviour. An overview of our process is given Figure

A function contract is composed of preconditions and postconditions. The function contract is:
if the preconditions are true when the function is called then the postconditions must be true after
the function execution. We use a Frama-C plugin named WPE] to verify function contracts. WP is
based on the weakest Precondition Calculus introduced in [7]]. The weakest Precondition Calculus
consists in computing the weakest precondition ensuring the postconditions. WP computes the
weakest precondition of the function contracts and generates proof obligations for the verification
of the implication of the weakest precondition by the initial preconditions. These proof obligations
are discharged by solvers available through Frama-C.

In this work, we only focus on the verification of the transition functions implementation. They
represent the core of a state machine behaviour.

3.2. State machine implementation pattern

To generate function contracts on the source code, we need to know: the prototype of functions;
the name and the type of the variables of the program. In addition, function contracts are also

http://frama-c.com/
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linked to the structure of the implementation. Therefore, we propose a code design pattern for the
implementation of our state machines.

Although we only focus on the transition functions, we give a global code design pattern
in order to give an overview of the implementation. This implementation pattern is based on
a representation of the states as an enumeration type named State. The enumeration possible
values of State are all the possible states of the state machine and one value named Null. This
value will represent the @ used in our semantics. In addition, all the variables used in the model
retain their names in the implementation.

The other parts of the implementation pattern of our state machine is composed of the following
functions.

o Two transition functions, one for the tick event, namely T_tick, and one for the completion
event, namely T_c. They represent the choice of the transition that will be fired according
to the transition guards. It returns the targeted state if a transition has been fired, the Null
value if not. Transition functions are, at top level, a switch/case structure to match with
the current state. For each case, a conditional structure if/else is implemented for each
outgoing transition of the state triggered by the corresponding event. It represents the guard
of the outgoing transition. The code design pattern for the T_tick is given in listing [1|(T_c
is based on the same pattern).

State T_tick (State current_state) {
State output_state=Null;
switch(current_state) {

case statel :
if (condition_transition1l)
output_state=targeted_state;
else if (condition_transition2)
output_state=other_targeted_state;
break;
}
return output_state;

}

Listing 1: T_ t4ck function pattern

e An action function, namely 4, which, for each state, executes the entry actions of the state.
Note that, according to the semantics, A will only be executed if a transition has been fired
(we do not give the code pattern of A).

e Two run-to-completion functions, namely RTC_tick and RTC_c, one for each possible event.
Each one calls its corresponding transition function. The code pattern of RTC_tick is given
in listing [2| (RTC_c is based on the same pattern).

State RTC_tick (State current_state) {
State compute_state=T_tick(current_state);
if (compute_state!=Null) {
A(compute_state);
return compute_state;
} else return Null;

}

Listing 2: RTC_ tick function pattern

e A function Cycle which implements the running of a state machine during one cycle. It calls
first the run-to-completion function for the tick event. If the return is not the Null value: first
it calls the run-to-completion function for the completion event until the return of Null and
then it returns the new state computed. The termination of the function must be ensured
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at the model level i.e. the model based design must guarantee that it exist a point where
no further completion transition can be fired during the cycle. The code pattern of Cycle is
given in listing |3| According to the semantics, we define, on the same pattern, a function
Cycle_0 which only calls the RTC_c function.

State Cycle (State current_state) {
State compute_state=RTC_tick(current_state);
if (compute_state!=Null) {
State last_state;
while (compute_state !=Null){
last_state=compute_state;
compute_state=RTC_c(last_state);
i
return last_state;
} else return current_state;

}

Listing 3: Cycle function pattern

The running of the state machine is represented by a while loop. In each loop, the program
waits until the next cycle and calls the cycle function (the code pattern is given in Listing [4).

current_state=Cycle_O(starting_state);
while (1) {
wait_tick();
current_state=Cycle(current_state);

}

Listing 4: while loop pattern

The application of the implementation pattern on the T_tick transition function of the example
in Figure [I)is given in Listing

State T_tick(State current_state){
State output_state=Null;
switch(current_state) {
case DefaultPosition:
if (pilot_lever==UP && squat_switch==AIR)
output_state=WaitingForTakeoff;
break;
case WaitingForTakeoff:
if (timer>=2 && squat_switch==AIR)
output_state=StartRaisingGear;
else if ((pilot_lever==DOWN && timer<2)||squat_switch==GND)
output_state=DefaultPosition;
break;
case RaisingGear:
if (pilot_lever==DOWN) output_state=LoweringGear;
else if (pilot_lever==UP && up_switches==0K)
output_state=GearUp;
break;
case GearUp:
if (pilot_lever==DOWN) output_state=StartLoweringGear;
break;
case LoweringGear:
if (pilot_lever==UP) output_state=RaisingGear;
else if (pilot_lever==DOWN && down_switches==0K)
output_state=GearDown;
break;
}
return output_state;

}

Listing 5: T_tick implementation for the LandingGear example
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3.3. Behavioural properties as function contract

The source code behavioural verification aims at proving properties stem from the UML state
machine specification. At the code level, we define them as ACSL function contracts on the
implementation. These function contracts aims at being generated from the state machine. The
behavioural properties are divided in two categories. First, the specification completeness, “the
specification is fully implemented”; second the specification soundness, “only the specification is
implemented”.

To ensure the specification completeness at the transition functions level, the implementation
must ensure the following properties:

(a) for the current state of the state machine, if the transition guard is true, the transition function
returns the specified targeted state;

(b) the transition function is without effect on state machine variables.

In the same vein as [9], we define an ACSL annotation pattern for each property. Property
(a) is represented as one ACSL ensures clause for each possible outgoing transition of the current
state. An ensures clause represents a property that must be true after the program execution. It
corresponds to a postcondition. In fact, we generate a set of ensures clauses for each transition
functions, T_tick and T_c. Each set regroups ensures clauses for each outgoing transition and for
each state, according to the event handled by the transition function. Following the transition
function prototype, the pattern for this property for a state is given in Listing [f} Note that the
return of a function is defined by the keyword \result in ACSL.

ensures <guard of outgoing transition 1>
==> \result == <target state of outgoing transition 1>;

ensures <guard of outgoing transition N>
==> \result == <target state of outgoing transition N>;

Listing 6: Property (a) pattern

Property (b) is represented by an ACSL assigns clause. The assigns clause is used to specify
exhaustively the memory allocations possibly modified by the C program. So if it is specified
with the keyword \nothing, the clause guarantees that no memory allocation has been modified.
Following the transition function prototype, the pattern for this property is given in Listing[7]

assigns \nothing;

Listing 7: Property (b) pattern

Specification soundness means that nothing else except the specified transitions is implemented
in the program. To ensure soundness, the implementation must verify the following properties:

(c) for the target state resulting of the firing of a transition and its specified source state, the
guard of the corresponding transition must be true;

(d) if no guard of the outgoing transitions of the current state is true, no transition is fired i.e.
the transition function returns @.

Property (c) allows to verify that no unspecified transition exists between two states linked by
a specified transition. As for property (a), it corresponds to one ensures clause for each possible
outgoing transition of each state, according to the event handled by the transition function. The
pattern for this property is given in Listing
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ensures \result == <target state of outgoing transition 1>
==> <guard of outgoing transition 1>;

ensures \result == <target state of outgoing transition N>
==> <guard of outgoing transition N>;

Listing 8: Property (c) pattern

Property (d) allows to verify that for a given state, there is no other possible target state than
the specified ones. It is also represented as an ensures clause. The pattern for this property is given
in Listing [9] The negation is expressed as the “!"” symbol in ACSL.

ensures (!<guard of outgoing transition 1>
&& ...
&& !<guard of outgoing transition N>)
==> \result == Null;

Listing 9: Property (d) pattern

All postconditions presented must be defined for each possible state. ACSL gives the possibility
to define multiple named function contracts, called behavior, for a function. Therefore, we define,
for the global function contract of each transition function, as many behavior as there are states with
outgoing transitions triggered by the event handled by the transition function. In these behavior,
the precondition deals with the current state. It is expressed as an assumes clause in ACSL. An
assumes clause represents the property that must be true for applying the behavior. For instance,
Listing [10] gives the ACSL behavior for the state RaisingGear of the T_tick function.

behavior RaisingGear:
assumes current_state==RaisingGear;
assigns \nothing;
ensures (pilot_lever==DOWN) <==> \result==LoweringGear;
ensures (pilot_lever==UP && up_switches==0K) <==> \result==GearUp;
ensures (!(pilot_lever==DOWN) && !(pilot_lever==UP && up_switches==0K))
==> \result==Null;

Listing 10: The behavior for the state RaisingGear in the T_tick function

In addition, we need to add a property in the soundness category:

(e) if a state is not handled by the verified transition function (i.e. this state has no outgoing
transition triggered by the event handled by the transition function), the transition function
does not fire any transition.

Property (e) means that the return value of the transition function must be @ for all unhandled
states. In ACSL, it is represented by a behavior composed of an assumes clause representing all the
states not handled by the transition function and an ensures clause representing the Null value
returned by the function. The example for the T_tick function of the example in Figure[l|is given

in Listing [T1]

behavior OtherStates:
assumes current_state!=LoweringGear
&& current_state!=DefaultPosition
&& current_state!=WaitingForTakeoff
&& current_state!=RaisingGear
&& current_state!=GearUp;
assigns \nothing;
ensures \result==Null;

Listing 11: property (e) for the T_tick function

10
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All the behavior described below represent the global function contract of a transition function.
Each global function contract allows to check the conformity of each transition function with
the behaviour expressed in the state machine. But, although we are able to detect unspecified
transitions, we cannot detect dead code i.e. transitions that never happen at execution or states
never reached.

Concerning the behavioural verification of the other implemented functions (A, RTC, Cycle),
the verification follows the same principle. We want to verify them using ACSL annotations
derived from the semantics of the state machine. But their verification raises other problems that
the one presented here like for instance the verification of the loop described in RTC or Cycle
function. We will not abord these subjects in this paper.

4. QOUR TOOL

We have implemented our approach in a prototype in Java. It comes as an Eclipsef| plugin
depending on the Topcasedﬂ framework. It allows, from the model explorer of a Papyrug'’| UML
model, to choose a state machine and to generate ACSL contracts from it. Users only have to
give the path to the C file they want to annotate in order to generate the annotated C file. We
implement for each ACSL clause and ACSL structure we use, a corresponding object for which we
implement its string representation. For instance, in our case an ACSL behavior is composed of an
object AssumesClause, an object AssignsClause and a collection of objects EnsuresClause.

The generation is done in 4 steps. First, we check that the selected state machine is well formed
according to our model rules. Indeed, the Topcased Papyrus editor allows the creation of UML
models based on the whole standard, but we only use a subset in our case. Secondly, we check
that the C file contains the transition functions. We use the Eclipse CDT AP]E] to parse the C file
and to retrieve the corresponding function to annotate. We memorise their locations in the file
thanks to their offsets. Thirdly, we parse the state machine and we create all the behaviours for
each state. Finally we generate a C file, corresponding to the C code and the annotations generated
at the right places in the code.

For the example described in Figure|l} we are able to generate 55 lines of function contracts for
more than 40 lines of C code for the two transition functions. All the function contracts have been
verified in a few seconds thanks to Frama-C and its plugin WP.

5. RELATED WORK

Some work exists on the verification of source code using annotations generated from a model
specification.

[8] proposes a way to automatically annotate C code according to a specification composed
of SAM (Structured Automata Model) automata. SAM is a domain specific language for the
behavioural representation of avionic components. The authors present an algorithm to generate
annotations from SAM automata to verify the code behaviour. The approach is similar to our
own since it consists in generating function contracts on the transition function implementing the
SAM automaton and they also present an industrial experimentation with promising results. By

Bwww. eclipse.org

9Toolkit in OPen-source for Critical Application and SystEms Development. It offers Model Driven Engineering
activities and it is based on the Eclipse environment. www.topcased.org

10Tt is tool for modelling in UML. The current Topcased model editor are based on Papyrus version 0.8. [www . papyrusuml |
org

1C/C++ Development Tooling. www.eclipse.org/cdt/
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contrast, the SAM automaton and generated function contracts are less complex than our UML
state machine and our annotations.

The Aorai plugin of Frama-C [20] allows to generate ACSL annotations from an automaton
specification expressed in LTL (Linear Temporal Logic). Aorai automatically annotates the targeted
source code and the verification is performed using the solvers available from Frama-C. Actually,
the automaton specification represents a chain of function calls and function returns. Each of
them can be associated to properties on the program variables. At the end, if the annotations are
verified, then the source code conforms to the specification. Aorai focuses on function calls at
global program level while our method focuses on function behaviour. Moreover, the specification
in LTL is more complex and less intuitive than a specification modelled with state machine
diagrams for users non-familiar with temporal logic.

In [16], authors propose the theoretical foundations of a toolset to generate annotations on the
software implementation from control theory properties and proof expressed in a control systems
design. The goal is to obtain an autocoder with proofs. The source language is an open-source
alternative of Matla]:f—_zl ScilabF—_SI and the target code is implemented in C language. The properties
annotated in the design are translated in ACSL annotations in the code. The ACSL annotations
are then verified using Frama-C. The authors present two methods. One is a direct mapping of
the annotations on the design and the semantics of Scilab operators to annotations on the code.
The other uses a gateway language, Lustre [14] in order to take into account different front end
languages for the design. The spirit of the approach is close to ours. It differs by the type of
systems to verify, the design language and the properties to verify.

In our approach, we use a part of the UML language version 2.4.1 limited to state machine
modelling as source for the design. As the current UML semantics is semi-formal, we needed to
formalise its semantics in order to avoid any ambiguities and to use formal methods in a rigorous
way. In the particular case of UML state machines, there is a lot of work on the formalisation of
their semantics. [6] aims at giving an overview of the state of the art. It lists 26 semantic approaches
structured in three categories. First, it lists work which is based on standard mathematical concepts
and notations. For instance, [18] uses Labelled Transition Systems (LTS) expressed in an algebraic
specification language for the representation of the semantics and [5] uses Abstract State Machines
(ASM). Secondly, it lists the approaches expressing the semantics as a set of rewriting rules. For
example, [21] and [12] use graph transformations and [2] defines translation rules to map an
UML specification to high-level Petri nets. Finally, it groups approaches based on the translation
of UML state machines into other formal languages. For instance, [1] defines the semantics in
PVS (Prototype Verification System) and [17] presents a global semantics which is implemented
in PROMELA for model checking. Note that none of the approaches supports all the UML
state machines concepts. Our work is clearly in the first category. We define a very simple
mathematical semantics dedicated to the needed concepts. Our semantics uses new concepts (like
cycle, transition functions, etc.), but it is fully compliant with the semantics described in the UML
standard.

6. CONCLUSION

We presented a method to automatically verify the behaviour of a C source code with respect to
its UML design model. The main advantage is to have a full MDE process which gives access to
formal methods and associated tools to non-expert users. The main drawback of the approach
we presented is that the implementation is very close to the semantics of our state machines.

12
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This work was motivated for multiple reasons. It allows users to be more confident on their
implementation in a simpler way: as the annotations are automatically generated from the model
and automatically verified, users do not need to change their technical know-how. Furthermore,
although MDE already permits to generate tests on the code, static analysis is more exhaustive
than software testing. Indeed, static analysis does not just test the code, it proves it i.e the results
of the verification are valid for all possible executions.

The results of our method are promising but it needs to be improved and experimented on
more complex models. Here, we only test it on small exemples (dozen of states). Moreover, we are
thinking about its application on other implementation patterns. In further work, the feedback of
the verification must be adapted to help the user to correct the implementation errors. Currently,
the user relies on the verification results of each annotation to determine where the problem is on
the code. We could explicit these feedback in a more detail and user-friendly way or present them
at model level. Furthermore, we plan to extend the UML subset we used. Our state machines are
limited to simple states. We would like to take into account hierarchical states such as composite
states or submachine states, as defined in the UML standard. We also need to define the formal
semantics of the subset in a more complete way since we only presented here the key concepts
useful for our method. Therefore, we limited our contribution for this paper to the behavioural
verification of transition functions. In a very close future, we will work on the way to verify the
other functions defined in our semantics, as this point is mandatory to obtain a complete proof of
the compliance of the implementation with the state machine behaviour. Finally, we plan to make
the annotation generator we presented available online to get the feedback of the community.
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